制作小车一些资料或许正在制作的朋友有所启发。记不得这是以前查资料制作时从哪里找到的了。在没有了解自控以前,对于寻迹小车只知道一种调节方法,就是比例调节,即向左偏就向右调节,向右偏就向左调节,最容易想到,也是最容易用软硬件实现的,但是结果也是最容易出问题的。当时的感觉就是小车太灵敏了,忽左忽右,不是很稳定。后来查了资料后知道了其他的调节方式。
控制算法
电机控制算法的作用是接受指令速度值,通过运算向电机提供适当的驱动电压,尽快地和尽快平稳地使电机转速达到指令速度值,并维持这个速度值。换言之,一旦电机转速达到了指令速度值,即使在各种不利因素(如斜坡、碰撞之类等使电机转速发生变化的因素)的干扰下也应该保持速度值不变。为了提高机器人小车控制系统的控制精度,选用合适的控制算法显得十分必要。控制算法是任何闭环系统控制方案的核心,然而并非越复杂、精度越高的算法越好,因为比赛要求非常高的实时性,机器人必须在非常短的时间内作出灵敏的反应,所以现代的一些先进控制算法,比如模糊控制、神经元网络控制等就不能应用到小车控制系统里。本系统选用了最常规、最经典的PID控制算法,通过实际应用取得了很好的效果。
1 比例项
控制回路中的第一个偏差转换环节就是比例项。这一环节简单地将偏差信号乘以常数K 得到新的CV值(值域为-100~100)。基本的比例控制算法如下:
loop:
PV=ReadMotorSpeed()
Error=SP-PV
CV=Error*Kprop
Setpwm(cv)
Goto loop
上一段程序中的SetPWM()函数并非将CV值作为绝对的PWM占空比来对待。否则,不断降低的偏差值会使输出值接近零,而且由于电机工作时需要持续的PWM信号,控制系统将会使电机稳定在低速运转状态上,从而导致控制系统策略失败。
相反,CV值一般被取作当前PWM占空比的改变量,并被附加到当前的PWM占空比上。这也要求SetPWM()函数必须将相加后得到的PWM占空比限制在0%~100%。正的CV值将使电机两端电压增加。负的CV值将使电机两端电压降低。如果CV值等于0,则无需改变但前占空比。较低的K 值会使电机的速度响应缓慢,但是却很平稳。较高的K 值会使速度响应更快,但是却可能导致超调,即达到稳定输出前在期望值附近振荡。过高的K 值会导致系统的不稳定,即输出不断震荡且不会趋于期望值。
2 微分项
任何变量的微分项被用来描述该变量是如何相对于另一个变量(多位时间)变化的。换句话说,任何变量的微分项就是它随时间的变化率。如位移随时间的变化率是速度。速度相对于时间的微分是加速度。
在PID控制器中,值得关心的是偏差信号相对于时间的微分,或称变化率。绝大多数控制器将微分项定义为:
Rate=(E-E )/T
式中,E为当前偏差,E 为前次偏差值,T为两次测量的时间间隔。负的变化率表明偏差信号的改善。当微分项被具体应用于控制器中时,将一个常数乘以该微分项,并将它加到比例项上,就可以得到最终的CV值计算公式:
CV=( K E)+( K Rate)
当偏差信号接近零时,CV值将为负,所以当偏差信号开始改善时,微分项的作用将逐渐减弱校正输出量。在某些场合下,微分项还有利于超调量的消除,并可以允许使用较大的K 值,从而可以改善响应的快速性。微分环节还预示了偏差信号的变化趋势。当控制对象对控制器的输出响应迟缓时,微分环节的作用尤为明显。
含有微分项的控制算法的伪代码实现如下:
loop:
PV=ReadMotorSpeed()
LastError=Error
Error=SP-PV
Rate=Error-LastError
CV=Error*Kprop+Krate*Rate
SetPWM(CV)
Goto loop
3 积分项
积分正好与微分相对。假如有一个描述变化率(微分)的表达式,那么对该表达式的积分就将得到随时间变化的原物理量。如加速度的积分是速度,速度的积分是位移。
在PID控制回路中,偏差的积分代表从控制开始时算起所有偏差积累的总和。该总和被常数K 所乘后再添加到回路输出中。在回路中,如果没有积分环节,尽管控制系统也会趋于稳定,但是由于某种原因输出值可能最终也无法达到SP值。
一个简单但完全的PID控制器地伪代码实现如下:
loop:
PV=ReadMotorSpeed()
LastError=Error
Isum=Isum+Error
Error=SP-PV
Rate=Error-LastError
CV=Error*Kprop+Krate*Rate+Kint*Isum
SetPWM(CV)
Goto loop
由于积分项会越来越大,这就会使控制回路在SP值的改变时响应变慢,某些应用场合在CV值达到取值边界(如为:-100~100)时会停止累加Isum。在SP值改变时,也可以除去Isum项。
本文转自:追风星空的博客