作者:Patrick Butler
简介
在物联网和云计算成为生活一部分,在行业媒体大肆宣扬之际,通过采用最先进的技术和优化设计,老式电子元件并未停止前进的步伐。其中一个例子是模数转换器,该器件现在可以超过每秒一兆次采样(MSPS)的速率实现32位分辨率,轻松通过传统的计量基准测试。
这些高精度转换器可以显示高于16位的分辨率,规定可比静态和动态特性,并且在仪表仪器和大型通用采集系统(测试、设备认证)、专业系统(医疗应用和光谱学数字成像)等专用领域以外,它们已经进入许多过程控制应用、可编程控制器、大型电机控制以及电能输配等领域。目前,几种ADC架构在精度方面不相上下;根据不同需求,具体的选择视模数转换原理、逐次逼近寄存器(SAR)以及∑-Δ而定,在数MSPS速率下,这些架构分别支持最高24位或以上的分辨率,为24位或更多,在几百kSPS速率下支持32位分辨率。当面对这些分辨率和精度水平时,这些转换器提供的有用动态范围很容易超过100 dBFS(满量程)的神奇屏障,用户面临的真正挑战体现在为要数字化的信号设计模拟调理电路,以及相关抗混叠滤波器的设计两个方面。在过去的二十年中,采样速率和滤波技术已经有了很大的发展,现在我们可以结合运用模拟和数字滤波器,在性能和复杂性之间达到更好的平衡。
图1所示为适用于数据采集系统的这类分区的一个典型示例。在调节差分或非差分信号(放大、缩放、自适应和电平转换等)之后,在数字化之前对后者进行滤波以满足奈奎斯特准则。根据ADC的过采样速率,要使用额外的数字滤波来达到采集系统的规格要求。
由于对超宽输入动态范围的需求增加,许多上述应用采用了最先进的高分辨率ADC。随着动态范围的增加,系统性能预计会提高,模拟调节链会减小,拥堵、能耗,甚至是材料成本都会下降。
