selina的博客

采用无线电源实现无电池应用

作者:Mark Vitunic

问题:我的应用没有电池。是否可以采用无线供电?

答案:当然可以,可使用最初设计用于能量收集的简单的集成式纳安功耗解决方案。

无线功率传输(WPT)系统由气隙分隔的两部分组成:发射(Tx)电路(包括发射线圈)和接收(Rx)电路(包括接收线圈)(见图1)。与典型的变压器系统非常相似,发射线圈中产生的交流电通过磁场感应在接收线圈中生成交流电。然而,与典型的变压器系统不同的是,原边(发射端)和副边(接收端)之间的耦合程度通常很低。这是由于存在非磁性材料(空气)间隙。

如何简化天线设计?相控阵波束成形IC来助你

为提高性能,无线通信和雷达系统对天线架构的需求不断增长。只有那些功耗低于传统机械操纵碟形天线的天线才能实现许多新的应用。除了这些要求以外,还需要针对新的威胁或新的用户快速重新定位,传输多个数据流,并以超低的成本……正在席卷整个行业的相控天线设计为这些挑战提供了解决办法。

本文简要介绍另外现有的天线解决方案以及电控天线的优势所在。在此基础上,还介绍了半导体技术的发展如何帮助实现改进电控天线 SWaP-C 这一目标,然后举例说明 ADI 技术是如何做到这一点的。

简介

依靠天线发送和接收信号的无线电子系统已经运行了100多年。随着精度、效率和更高级指标变得越来越重要,这些电子系统将继续改进和完善。在过去几年中,碟形天线已被广泛用于发射 (Tx) 和接收 (Rx) 信号,其中方向性至关重要,并且经过多年的优化,许多这些系统都能以相对低的成本良好地运行。这些碟形天线拥有一个用于旋转辐射方向的机械臂,它们的确存在一些缺点,包括转向慢、物理尺寸大、长期可靠性差并且只有一个符合要求的辐射图或数据流。因此,工程师们已转向先进的相控阵天线技术来改进这些特性、添加新功能。

电压反馈型运算放大器的增益和带宽,你该这样掌握

开环/闭环增益,可都是熟悉的面庞,那你掌握其方法了吗?例如:标定运算放大器的增益和带宽有哪些常用之法?下面小A即将送上一份适用于电压反馈(VFB)型运算放大器的方法,希望大家喜欢~

开环增益

与理想的运算放大器不同,实际的运算放大器增益是有限的。开环直流增益(通常表示为 AVOL)指放大器在反馈环路未闭合时的增益,因而有了“开环”之称。对于精密运算放大器, 该增益可能非常高,为160 dB(1亿)或以上。从直流到主导极点转折频率,该增益表现平坦。 此后,增益以6 dB/8倍频程(20 dB/10倍频程)下降。(8倍频程指频率增加一倍,10倍频程指 频率增加十倍。)如果运算放大器有一个单极点,则开环增益继续以该速率下降,如图1A 所示。实际的运算放大器一般有一个以上的极点,如图1B所示。第二个极点会使开环增益下降至12 dB/8倍频程(40 dB/10倍频程)的速率增加一倍。如果开环增益在达到第二个极点的频 率之前降至0 dB(单位增益)以下,则运算放大器在任何增益下均会无条件地保持稳定。数据手册上一般将这种情况称为单位增益稳定。如果达到第二个极点的频率且闭环增益大于 1 (0 db),则放大器可能不稳定。有些运算放大器设计为只有在较高闭环增益下才保持稳定, 这就是所谓的非完全补偿运算放大器。

自动驾驶汽车的电源系统能胜任吗?

自动驾驶汽车,它们不需要一个人类驾驶员坐在方向盘后面(当然,也许会有一个,但并不是从传统的角度实际使用操控机制)。与之相反,相当于人类驾驶员的微型计算 机主机运行大量的计算机代码,与车辆内外各种不同的传感器阵列相连。它们连接至云,并可以完全实时模拟车辆周围的外 部环境,从而根据当前四周的交通情况预期需要采取的行动。 无论气候、环境和交通条件的范围和状况如何,这些操作都会 正常执行。

不幸的是,最近在亚利桑那州发生了一起自动驾驶路测车撞死 骑车人的事故。据当地警方表示,骑车人当时正在人行道以外的地方穿越马路。虽然自行车位于事故现场,但警方并不认为事故发生时,受害者正骑着自行车。受害者被紧急送往附近的医院,并在抵达医院后不久被宣布死亡。

事发时,在自动驾驶SUV的方向盘后有一个人,但是那个人并没有实际操控车辆。据当地官员介绍,事发时车内没有其他乘 客。值得注意的是,亚利桑那州是美国为数不多的州,认定自 动驾驶汽车的驾驶座不需要有人以便必要时接管车辆操控为合法的。然而,这类事故无法增加公众对无人驾驶汽车的自动驾驶能力的信心。

自动驾驶车辆时间表

D类放大器&A/B类、AB类……你分清楚了吗?

D类放大器首次提出于1958年,但得益于数字音响技术的发展,使得它的很多优点都被展现出来,因而现在已经流行起来了。那么同其它类型的放大器相比,它有什么与众不同的地方呢?请往下看~

D类放大器的优点
在传统晶体管放大器中,输出级包含提供瞬时连续输出电流的晶体管。实现音频系统放大器许多可能的类型包括A类放大器,AB类放大器和B类放大器。

与D类放大器设计相比较,即使是最有效的线性输出级,它们的输出级功耗也很大。这种差别使得D类放大器在许多应用中具有显著的优势,因为低功耗产生热量较少,节省印制电路板(PCB)面积和成本,并且能够延长便携式系统的电池寿命。此外,它的能量转换效率高。体积相对来说也比较小,因此可靠性强。

A/B、AB类与D类放大器的较量

线性放大器输出级直接连接到扬声器(有些情况下通过电容器连接)。如果输出级使用双极性结型晶体管(BJT),它们通常工作在线性方式下,具有大的集射极电压。输出级也可以用互补金属氧化物半导体(CMOS)晶体管实现,如图1所示。

2018 EDN Hot 100揭榜,ADI 8 款产品荣登榜单

ADI 的 8 款产品荣登 2018 EDN Hot 100 产品榜!

Hot 100 是 EDN 一项承传已久的历史活动,每年美国的编辑们都会选出当年最热门的 100 款产品分享给大家,帮助我们了解一些重要的新技术。

登上 EDN Hot 100 的 ADI 产品都是哪些?它们为何如此受青睐呢?跟随小编的介绍一起了解下吧~

测试与测量

“测试与测量”部分包括万用表、示波器、分析仪等。ADI 的射频 ADC AD9213 荣登此类榜单。

上榜理由

12 位 10.25-GSPS 射频 ADC AD9213 以 10.25 Gsamples/s 的速度对高达 6.5 GHz 的宽带模拟信号进行采样,是同类设备的两倍半。

模拟及器件

毫米波无线电:从位到毫米波、从毫米波到位

今天,让我们更详细地讨论位到毫米波无线电,并探讨系统这一部分的挑战。关键是要将位转换为毫米波,再以高保真度转换回来,以支持64 QAM等高阶调制技术,以及未来系统中可能高达256 QAM的技术。

这些新无线电的主要挑战之一是带宽。5G 毫米波无线电名义上必须处理1 GHz或可能更高的带宽,具体取决于频谱的实际分配方式。虽然28 GHz下的1 GHz带宽相对较低 (3.5%),但假设是3 GHz中频下的1 GHz带宽,那么设计起来就更具有挑战性,并且需要某种先进技术来实现高性能设计。

图1展示了一个基于组件的高性能位到毫米波无线电的方框图示例,构成ADI公司的宽RF和混合信号产品系列。

图1. 宽带位到毫米波无线电框图

该信号链经证实 在28 GHz上支持连续的 8× 100 MHz NR载波,具有出色的误差矢量幅度(EVM)性能。

关于ESD,这几个问题你要弄明白

ESD断路过压保护

在安装于印刷电路板之前,必须对线性IC(如运算放大器、仪表放大器和数据转换器)进行保护。这即所谓断路(out-of-circuit)状态。在这种条件下,IC可能遇到多大的浪涌电压完全取决于其环境。多数情况下,有害的浪涌电压来自静电放电,即常说的ESD。这是一种单次、快速、高电流的静电荷传输现象,源于两种条件,它们是:

* 两个处于不同电位的物体之间的直接接触传输(有时称为接触放电)
* 两个物体靠近时之间产生的高静电场(有时称为气隙放电)。

静电的主要来源基本都是绝缘器并且一般都是合成材料,如乙烯或塑料工作表面、绝缘鞋、经过表面加工的木质椅子、透明胶带、气泡袋、尖端未接地的烙铁等。这些来源产生的电平极高,因为它们的电荷并不容易分布在表面上或者传导给其他物体。两个物体相互摩擦产生静电被称为摩擦电效应。一些常见行为会产生较大的ESD电压,部分示例见图1。

如何通过自举扩展运算放大器工作范围

当现成的运算放大器(op amp)不能提供特定应用所需的信号摆幅范围时,工程师面临两种选择:使用高压运算放大器或设计分立解决方案,不过这两种选择的成本可能都很高。

对许多应用来说,第三种选择——自举——可能是比较廉价的替代方案。除了动态性能要求极为苛刻的应用,自举电源电路的设计是相当简单的。

自举简介

常规运算放大器要求其输入电压在其电源轨范围内。如果输入信号可能超过电源轨,可以通过电阻衰减过大输入,使这些输入降至电源范围以内的电平。这样处理并不理想,因为它会对输入阻抗、噪声和漂移产生不利影响。同样的电源轨也会限制放大器输出,闭环增益的大小存在一个限值,以避免将输出驱动到饱和状态。

因此,如果要求处理输入和/或输出上的大信号偏离,则需要宽电源轨和能在这些电源轨上工作的放大器。ADI 的 24V 至 220V 精密运算放大器 ADHV4702-1 是适合这种情况的出色选择,不过自举低压运算放大器也能满足应用要求。是否使用自举主要取决于动态要求和功耗限制。

5分钟教你实现低功耗、低成本的差分输入转单端输出放大器电路

许多应用都需要使用低功耗、高性能的差分放大器,将小差分信号转换成可读的接地参考输出信号。两个输入端通常共用一个大共模电压。差分放大器会抑制共模电压,剩余电压经放大后,在放大器输出端表现为单端电压。共模电压可以是交流或直流电压,此电压通常会大于差分输入电压。抑制效果随着共模电压频率增加而降低。相同封装内的放大器拥有更好的匹配性能、相同的寄生电容,并且不需要外部接线。因此,相比分立式放大器,高性能、高带宽的双通道放大器拥有更出色的频率表现。

一个简单的解决方案就是使用阻性增益网络的双通道精密放大器,如图1所示。此电路显示了一种将差分输入转换为带可调增益的单端输出的简单方式。系统增益可通过公式1确定:

其中,增益=RF/1k,且(VIN1–VIN2)是差分输入电压。