selina的博客

低功耗、低成本的差分输入转单端输出放大器

作者:Chau Tran和Jordyn Rombola

问:如何实现低功耗、低成本的差分输入转单端输出放大器电路?

答:许多应用都需要使用低功耗、高性能的差分放大器,将小差分信号转换成可读的接地参考输出信号。两个输入端通常共用一个大共模电压。差分放大器会抑制共模电压,剩余电压经放大后,在放大
器输出端表现为单端电压。共模电压可以是交流或直流电压,此电压通常会大于差分输入电压。抑制效果随着共模电压频率增加而降低。相同封装内的放大器拥有更好的匹配性能、相同的寄生电容,并且不需要外部接线。因此,相比分立式放大器,高性能、高带宽的双通道放大器拥有更出色的频率表现。
一个简单的解决方案就是使用阻性增益网络的双通道精密放大器,如图1所示。此电路显示了一种将差分输入转换为带可调增益的单端输出的简单方式。系统增益可通过公式1确定:

VOUT = –增益 × (VIN1 – VIN2) (1)

其中,增益= RF/1 kΩ,且 (VIN1 – VIN2) 是差分输入电压。

音频系统性能是否高,这两个器件很关键

高分辨率、高保真度和高质量是音频行业使用的一些典型行话,但它们确实是发烧友最为关注的特性。虽然看起来如此吸引人,但若不使用正确的器件,它们是很难实现的,特别是当设计还有高功效比的额外负担时。

高功效比系统通常使用低压差稳压器 (LDO),世界上有许多公司制造 LDO。选择 LDO 时,最受关注的规格常常是低噪声和高电源电压抑制比 (PSRR)。然而,仅基于这些参数的产品设计并不能真正提供最佳音频性能,还必须检查稳压器的瞬态响应,因为当音频设备改变其工作模式时,LDO 上的负载需求可能会发生变化。数字电路不能很好地适应大电压瞬变。

ADI 公司拥有一些瞬态响应性能出色的 LDO,最适合高分辨率和高质量产品。例如,正线性稳压器 LT1763、LT1965 和负线性稳压器 LT1964、LT3015 有助于改善电压调节性能,消除负载瞬态电压尖峰,从而提供更好的音频性能。

开年第一篇丨如何使用高精度仪表放大器进行远程检测?

仪表放大器(IA)是检测应用的主力。本文将探讨一些利用仪表放大器的平衡和出色直流/低频共模抑制(CMR)特性的方法,使得仪表放大器配合阻性传感器(例如应变计)使用,传感器与放大器在物理上分离。文中将提出一些提高此类增益级的抗噪性,同时降低其对电源变化和元件漂移的敏感性的方法。文章还会提供实测性能值和结果以展示精度范围,方便最终用户应用进行快速评估。

说到传感器,几乎没有什么能比得过惠斯登电桥(图1)。该电桥可产生差分电压,当物理参数变化时,差分电压会随之发生可预测的变化。差分电压还有抑制温度和时间漂移的附带好处。差分电压位于较大共模 (CM) 电压之上。使用仪表放大器来放大电桥提供的小信号。仪表放大器的优点在于,在电桥元件负载很少或没有负载的情况下,它可以检测差分电压并将CM抑制到传统运算放大器无法实现(因为要求外部电阻高度匹配)的程度。

比亚迪采用ADI音频总线和DSP技术,提升汽车能效及信息娱乐体验

中国汽车制造商比亚迪将采用 ADI 公司的汽车音频总线 (A2B®) 及 SHARC® 数字信号处理器 (DSP),打造能效更高、更节能环保的汽车平台,提升驾乘人员的沉浸式车载音频信息娱乐体验。

比亚迪公司指出,ADI 的汽车音频总线和 DSP 技术使得比亚迪汽车能够进一步提升驾驶座舱信息娱乐系统的性能和体验、降低设计复杂度和成本、提升燃油/电池效率,这符合比亚迪公司“用技术创新满足人们对美好生活的向往”这一造车理念。

比亚迪是一家倍受尊重的创新型汽车制造商,ADI 的 A2B及 SHARC 处理器技术能够助力比亚迪为终端用户提供更加优异的能效及车载音频体验。

——ADI 中国汽车事业部销售总监 许智斌

卡尔曼或FIR滤波器哪个适合IMU?

作者:Ian Beavers

问:配置惯性测量单元(IMU)对传感器数据进行后置滤波时,我看到有抽取FIR滤波器和卡尔曼滤波器两个选项。哪个选项最适合我的应用?

答:每个滤波器选项在IMU内提供截然不同的功能。它们的运行在极大程度上是相互独立的。其使用取决于终端系统的要求。让我们更深入地了解其细节,以及它们如何应用于传感器系统。抽取与有限脉冲响应(FIR)滤波器配合使用,是一种降低IMU全输入带宽的方法,目的是仅聚焦于一个较窄的低通活动频段。这对于有许多旋转和加速频率运动,但其中只有一部分需要在传感器内观测的系统特别有用。此外,任何不必要的或被忽略的更高频活动都有可能混叠回到目标频段中,而不会被FIR带通滤波器抑制。

当不需要传感器的全部带宽时,FIR滤波器最有价值。相反,如果目标频段是低通区域中的已知信号频率带宽,则可以滤除不需要的信号。例如,一个系统的目标旋转频率可能仅在20 Hz到50 Hz之间。虽然可能会检测到其他更高频率的噪声,但IMU中的测量不需要担心。图1所示为利用抽取和FIR滤波器选项B以16的系数对全带宽进行低通滤波的方法。

三大工业控制系统,是迥异还是同源?

随着工业技术的快速发展,相继出现了集散控制系统和现场总线控制系统, 一些行业当中有的人认为FCS 是由PLC发展而来的;另一些行业的人认为FCS又是由DCS发展而来的。FCS与 PLC及DCS之间既有密不可分的关联, 又存在着本质的区别。

DCS(Distributed Contorl System),集散控制系统,又称分布式控制系统,是相对于集中式控制系统而言的一种计算机控制系统,它是在集中式控制系统的基础上发展、演变而来的。
FCS(FieldBus Contorl Syestem),现场总线控制系统。它是用现场总线这一开放的、具有互操作性的网络将现场各个控制器和仪表及仪表设备互联,构成现场总线控制系统,同时控制功能彻底下放到现场,降低了安装成本和维修费用。
PLC(Program Logic Control ),可编程逻辑控制器。

FCS和DCS的详细对比

传动刚性对运动控制系统的影响

无论对于体育运动还是设备运控,“核心力量”都是至关重要的,本期我们就来严肃的浅析一下,作为运控系统的“腰”--传动链的刚度特性对运控系统会产生什么样的影响。

机械传动的刚性,其实说的是运动作用力从动力源输出到负载受力响应的速度,这个响应速度越快,就是刚性越好,反之刚性如果较差,就说明动力源与负载之间的力(或力矩)的传递有延时和迟滞的效应,负载不能及时获得运动所需要的动力。

传动链在力传导上的延时和迟滞,通常表现为两种形式,回程间隙和弹性特质。在实际应用中,它们往往是同时并存的,但在分析和调整时,我们往往是分开处置的。

先说回程间隙。

回程间隙指的是,传动系统的驱动侧与被驱动侧的联接有“间隙”,两侧在运动和运行过程中会在这个“间隙”内产生相对位移。

比较典型的回程间隙,就是在齿轮传动时所说的齿隙(或背隙)。

工业电机驱动中,如何成功可靠地实现短路保护

工业电机驱动的整个市场趋势是对更高效率以及可靠性和稳定性的要求不断提高,功率半导体器件制造商不断在导通损耗和开关时间上寻求突破。有关增加绝缘栅极双极性晶体管(IGBT)导通损耗的一些权衡取舍是:更高的短路电流电平、更小的芯片尺寸,以及更低的热容量和短路耐受时间。这凸显了栅极驱动器电路以及过流检测和保护功能的重要性。
今天我们会讨论现代工业电机驱动中成功可靠地实现短路保护的问题,同时提供三相电机控制应用中隔离式栅极驱动器的实验性示例。

工业环境中的短路

工业电机驱动器的工作环境相对恶劣,可能出现高温、交流线路瞬变、机械过载、接线错误以及其它突发情况。其中有些事件可能会导致较大的过流流入电机驱动器的功率电路中。图1显示了三种典型的短路事件。

图1. 工业电机驱动中的典型短路事件

工业电机驱动中三种典型的短路事件:

一款面向 24 位 ADC 的抗混叠滤波器

对很多 ADC 应用而言,在缓冲器输入端放置一 个简单的 RC 滤波器就可提供充分的抗混叠滤波。 就需要更高阶滤波器的应用而言,常常使用有源滤波器。这种滤波器中的有源组件必须有足够的带宽、 能够快速稳定、具低噪声和低失调,以在信号到达 ADC 之前不使信号产生讹误。

LTC6363 是一款差分 运算放大器,为驱动低功率 SAR ADC 而优化。 LTC6363 提供 500 MHz GBW、780 ns 稳定至 4 ppm、 具 2.9 nV/√Hz 和 100μV 最大失调电压。

图 1 显示了一个采用 LTC6363 的 30kHz 三阶 滤波器,该器件为与 1.5Msps/2Msps 低功率 SARADC LTC2380-24 一起使用进行了优化,并具有集 成的数字滤波器。LTC2380-24 可实时平均 1 至 65536 个转换结果,从而提高了信噪比(SNR)。这个电路的两个输入都可在±2.5 Vpp 的信号范围内 以差分方式驱动,或者一个输入可以接地,另一个输 入用高达±5 Vpp 的信号驱动。

提高差分放大器的共模抑制比,电阻的选择很关键

在各种应用领域,采用模拟技术时都需要使用差分放大器电路。例如测量技术,根据其应用的不同,可能需要极高的测量精度。为了达到这一精度,尽可能减少典型误差源(例如失调和增益误差,以及噪声、容差和漂移)至关重要。为此,需要使用高精度运算放大器。放大器电路的外部元件选择也同等重要,尤其是电阻,它们应该具有匹配的比值,而不能任意选择。

图 1. 传统的差分放大器电路。

理想情况下,差分放大器电路中的电阻应仔细选择,其比值应相同 (R2/R1 = R4/R3)。这些比值有任何偏差都将导致不良的共模误差。差分放大器抑制这种共模误差的能力以共模抑制比(CMRR) 来表示。它表示输出电压如何随相同的输入电压(共模电压)而变化。

在最佳情况下,输出电压不应该改变,因为它只取决于两个输入电压之间的差值(最大 CMRR);但是,实际使用中情况会有所不同。CMRR 是差分放大器电路的重要特性,通常以 dB 来表示。