selina的博客

化被动为主动,精确又稳健的电池管理系统是这样滴

通过被动和主动电池均衡,电池组中的每个单元都得以被有效监控并保持健康的荷电状态(SoC)。这样不仅可以增加电池循环工作次数,还能够提供额外的保护,防止电池单元由于过度充电/深度放电而产生损坏。

被动均衡通过泄放电阻消耗多余的电荷,使所有电池单元都具有大致相当的 SoC,但是它并不能延长系统运行时间。
主动电池平衡是一种更复杂的平衡技术,由于在充电和放电循环期间,电池单元内的电荷得到重新分配,因此电池组中总的可用电荷也得到增加,从而延长了系统运行时间。与被动均衡相比,主动平衡能够缩短充电时间,并减少均衡时产生的热量。

主动电池均衡放电期间

图1表示的是一个典型的处于满容量状态的电池组。在此示例中,满容量指的是充电量达到90%,因为长时间将电池保持在(或接近)100%的容量位置会使其使用寿命下降得很快。而完全放电指的是放电至30%,这样可以防止电池进入深度放电状态。

多角度分析运放电路如何降噪,解决方法都在这里了!

噪声可以是随机信号或重复信号,内部或外部产生,电压或电流形式带或宽带,高频或低频。(在这里,我们将噪声定义为任何在运放输出端的无用信号)

噪声通常包括器件的固有噪声和外部噪声,固有噪声包括:热噪声、散弹噪声和低频噪声(1/f噪声)等;外部的噪声通常指电源噪声、空间耦合干扰等,通常通过合理的设计可以避免或减小影响。降低外部噪声的影响对发挥低噪声运放的性能至关重要。

常见外部噪声源

电源纹波

在全波整流的线性稳压供电的电路中,100Hz纹波是主要的电源噪声,对于运放电路,100Hz噪声电平通常要求控制在10nV-100nV(RTI)内,这取决于三个因素:运放在100Hz时的电源抑制比(PSRR),稳压器的纹波抑制比及稳压器的输入滤波电容的大小。

涨知识!通过联锁栅极驱动器来提高三相逆变器的鲁棒性

变频驱动器(VFD)是工业自动化机械的重要组成部分。它们能够高效地驱动泵、风扇、传送带、计算机数控机床和机器人自动化解决方案,有助于降低工厂的总能耗。若VFD发生故障会直接导致机器停机,进而造成工厂停工和生产损失。因此,VFD的可靠性和鲁棒性是机器制造商和工厂业主的关键要求。

图1所示的三相逆变器结构是VFD的核心,能够将整流后的电源电压转换为输出到电机的可变频率和可变电压。逆变器的鲁棒性是确保VFD鲁棒性的关键要素。

图1:带隔离栅极驱动器的三相逆变器

三相逆变器的关键组件是绝缘栅双极晶体管(IGBT)电源开关(通常集成在单个IGBT模块内)和控制IGBT栅极的隔离栅极驱动器。微控制器(MCU)产生彼此互补的高侧和低侧脉冲宽度调制(PWM)信号,在PWM信号转换期间插入死区时间。该死区时间确保顶部和底部IGBT栅极信号不会同时为高电平。

升级传统触摸屏测试,ADI提供快速且灵敏的新方案

电容触摸屏在智能手机和平板电脑等消费电子产品中的应用非常普遍。传统触摸屏测试主要集中在功能测试,通过操作员的手指直接进行功能测试评估,通常不包含性能和一致性测试。本文提出的解决方案可用来解决此问题,用于提高触摸屏生产制造中的可靠性和一致性,实现高标准大规模制造中的品质控制。该方案探讨了在大规模生产中如何测量触摸屏电容值,以及如何在贴装IC驱动芯片之前发现有缺陷的触摸屏。此外,快速测试和高灵敏度测量是制造测试中的两个主要目标。在这个应用里面相对精度比起绝对精度来更加重要一些。不断提高的触摸屏产量,迫切需要能够节省大量时间和人工成本的自动化测试解决方案。

触摸屏技术介绍

了解触摸屏技术有助于理解下一章节中的测试方法和系统框图。电容触摸屏技术主要有两种:自容屏和互容屏,如图1所示。

低噪声和低功耗不可兼得?这可不一定

鱼和熊掌不可兼得,那低噪声和低功耗也不可兼得吗?这可不好说噢~

经过对MEMS加速度计的调查发现,目前一个产品确实不能同时提供最低噪声和最低功耗。将ADXL355等低噪声加速度计与一款受欢迎的低功耗加速度计相比较时,ADXL355具备如下表现:

* 噪声密度为20μg/Hz1/2,低9倍
* 功耗为338 μW,高大约13倍

当传感器未在使用时,如果应用对传感器周期供电以节省电能,噪声与功耗的关系会大不相同。这种差异来源于建立时间,这可能让有些人大吃一惊。在需要对一组连续数组的传感器数据求均值以达到关键不确定性条件的应用中,填充该数组所需的时间会直接影响总建立时间。

ADALM1000 SMU培训 主题17:基本运算放大器配置

作者:Doug Mercer和Antoniu Miclaus

在本实验中,我们将介绍一种有源电路——运算放大器(op amp),其某些特性(高输入电阻、低输出电阻和大差分增益)使它成为近乎理想的放大器,并且是很多电路应用中的有用构建模块。在本实验中,你将了解有源电路的直流偏置,并探索若干基本功能运算放大器电路。我们还将利用此实验继续发展使用实验室硬件的技能。

材料:

* ADALM1000硬件模块
* 无焊试验板和跳线套件
* 一个1 kΩ电阻
* 三个4.7 kΩ电阻
* 两个10 kΩ电阻
* 一个20 kΩ电阻
* 两个AD8541器件(CMOS轨到轨放大器)
* 两个0.1 μΩ电容(径向引线)

1.1 运算放大器基础知识

第一步:连接直流电源

专业课程很难办?Mini型多功能移动实验室来助战!

俗语道:麻雀虽小,五脏俱全。

ADALM1000作为一款Mini可爱而又灵活方便的便携式电子电路实验室,无疑是大家心中最赞的那个“它”了。个头儿虽小,但各种实验室里的功能,可是一应俱全。不仅携带方便,成本还低,简直就是为学子们量身定制的最佳产品。有了它,你还会担心专业课程难吗?
动态黑色音符

这款ADI的ADALM1000主动学习模块也可以称为M1K。M1K是一个评估平台,它有助于在亲自动手的环境中介绍电气工程概念的基础知识,并帮助尽早在教育过程中体验实时工程设计方案。M1K可用作函数发生器、示波器、频谱分析仪和数字万用表,除笔记本电脑或平板电脑外,无需额外硬件。

图1.ADALM1000(M1K)主动学习模块。

主机突然断电了数据会凉吗?备份电源了解一下

在嵌入式系统需要可靠供电的电信、工业和汽车应用中,数据丢失现象是个问题。供电的突然中断会在硬盘驱动器和闪存执行读写操作时损坏数据。不过设计人员常常使用电池、电容器和超级电容器来存储足够的能量,以在供电中断期间为关键的负载提供短期电源支持。

LTC3643 备份电源使得设计人员能够采用一种相对便宜的储能元件:低成本电解电容器。在这里提及的备份电源或保持电源中,当电源存在时,LTC3643 把一个存储电容器充电至 40 V,而当电源中断时,LTC3643 则把该存储电容器的电能释放给关键负载。负载 (输出) 电压可变成为 3 V 和 17 V 之间的任何电压。

LTC3643 可轻松用于 5 V 和 12 V 电压轨的备份解决方案,但是 3.3 V 电压轨解决方案则需要格外谨慎。LTC3643 的最小工作电 压为 3 V,比较接近于 3.3 V 的标称输入电压电平。如图 1a 所 示,当采用一个隔离二极管将备份电压电源与非关键的电路分离时,这种余量就太紧了。如果 D1 是一个肖特基二极管,其正向压降 (作为负载电流和温度的函数) 会达到 0.4 V 至 0.5 V,足以把 LTC3643 VIN 引脚上的电压置于 3 V 最小值以下。因此,备份电源电路可能无法启动。

如何实现电机驱动中Σ-Δ ADC的最佳性能?

Ʃ-Δ 型模数转换器广泛用于需要高信号完整度和电气隔离的电机驱动应用。虽然Σ-Δ技术本身已广为人知,但转换器使用常常存在不足,无法释放这种技术的全部潜力。本文从应用角度考察Σ-Δ ADC,并讨论如何在电机驱动中实现最佳性能。

在三相电机驱动中测量隔离相电流时,有多种技术可供选择。图1显示了三种常用方法:一是隔离传感器(如霍尔效应或电流互感器)结合一个放大器;二是电阻分流器结合一个隔离放大器;三是电阻分流器结合一个隔离Σ-Δ ADC。

图1. 三相电机驱动的常见电流测量技术

本文重点讨论性能最高的方法——Σ-Δ转换。通常,Σ-Δ ADC针对的是需要高信号质量和电流隔离度的变频电机驱动和伺服应用。随ADC而来的还有解调和滤波,这些一般是由FIR滤波器(如三阶sinc滤波器sinc3)处理。

ADALM1000 SMU培训 主题16:测量扬声器阻抗曲线

作者:Doug Mercer和Antoniu Miclaus

本实验活动的目的是测量永磁扬声器的阻抗曲线和谐振频率。

动态扬声器的主要电气特性是作为频率函数的电阻抗。通过绘图可以将其可视化,该图称为阻抗曲线。最常见类型的扬声器是使用连接到振膜或纸盆的音圈的机电换能器。动圈式扬声器中的音圈悬挂在由永磁体提供的磁场中。当电流从音频放大器流过音圈时,由线圈中的电流产生的电磁场对永磁体的固定场作出反应并移动音圈和扬声器纸盆。交替电流将来回移动纸盆。这种运动使空气振动并产生声音。扬声器的移动系统(包括纸盆、弹波、纸盆支片和音圈)具有一定的质量和特定的顺序。通常将这种情况模拟成由弹簧悬挂起来的简单质量块,其具有一定的谐振频率,系统在该共振频率下有最大的振动自由度。