selina的博客

快速掌握变频器的工作原理以及接线图

1.变频器介绍

变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的。

2.变频器工作原理

变频器可分为电压型和电流行两种变频器。

电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。

电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。是整流器,整流器,逆变器。

而变频器的主电路由整流器、平波回路和逆变器三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路。

ADI iCoupler数字隔离器为Lantronix 新型无线医疗设备带来更优性能、 更小尺寸和更高可靠性

医疗设备行业的持续创新为通过互联网收集和分发病人信息带来了众多新的可能,使医护人员能实时远程访问关键数据,确保实现最高水平的病人护理和运行效率。作为安全通信解决方案领域举世公认的领先企业,Lantronix®目前推出了新型EDS-MD™多端口医疗设备服务器,为这种转型创造了更多便利。该服务器专为医疗行业设计,可实现病人监护系统、血糖分析仪、心电图仪、输液泵等医疗设备的安全访
问和管理。

EDS-MD医疗设备服务器采用壁装式设计,有4、8、16端口三种配置可供选择,提供多个千兆以太网连接和两个USB端口,支持企业级安全协议(SSH和SSL),完全符合IEC-60601-1、EN 6061-1-2和UL 6061-1等监管和安全标准。EDS-MD系统具有众多显著特性,其中,最值一提的是电流隔离功能,Lantronix的设计团队将该功能应用于采用ADI高级iCoupler® 数字隔离器的每一个端口。EDS-MD的电流隔离功能可为诸如此类连接设备提供最高等级的安全性,有助于确保将接地故障、功能故障等限制在单个端口,避免影响EDS-MD本身或者其他连接设备的完整性或可用性。

伺服电机三环控制系统调节方法浅谈

随着工业自动化程度的不断提高,伺服控制技术、电力电子技术和微电子技术的快速发展,伺服运动与控制技术也在不断走向成熟,电机运动控制平台作为一种高性能的测试方式已经被广泛应用,人们对伺服性能的要求也在不断提高。

一、三环控制原理

1、首先是电流环,此环完全在伺服驱动器内部进行,通过霍尔装置检测驱动器给电机的各相的输出电流,负反馈给电流的设定进行PID调节,从而达到输出电流尽量接近等于设定电流,电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。

2、第二环是速度环,通过检测的伺服电机编码器的信号来进行负反馈 PID 调节,它的环内 PID 输出直接就是电流环的设定,所以速度环控制时就包合了速皮环和电流环,换句话说任何棋式都必须使用电流环,电流环是控制的跟本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。

3、第三环是位置环,它是最外环,可认在驱动器和伺服电机编码器间构建也可以在外部控制器和电机编码器或最终负载间构建,要根据实际情况来定。由于位置控制环内部输出就是速度环的设定,位置控制模式下系统进行了所有 3 个环的运算,此时的系统运算量最大,动态响应速度也最慢。

ADI工程师博客分享——DDS与PLL的细微差别

本文由ADI时钟和信号部市场经理JLKeip撰写

在上篇内容 DDS or PLL? 中承诺,我会对DDS/PLL优势对比表的一些微妙之处做一个评述。

这里先谈谈我认为更适合DDS的一些特点。

频率分辨率,这里有几点细微差别…

有一款DDS运行速度为400 MSPS,使用48位调谐字(AD9956),由此得到的调谐分辨率不低于1.42 µHz,不错,其单位是微赫兹。标准PLL的分辨率受限于环路中分频器的深度,比这要差几个数量级。但有一点必须要提,小数 N分频 PLL(N为PLL中反馈分频器的分频系数)能够显著缩小该差距。但使用小数N分频PLL有弊端:输出中杂散会更多,信号抖动更厉害。

ADI工程师博客分享——高速转换器的创新从三个方面改变世界

作者: HighSpeedMkt,ADI高速转换器业务部门工程师

新一代高速转换器采用深亚微米CMOS技术和专有架构,有望实现业界领先的高动态范围关键参数性能。这将从以下三个方面推动下一个千兆赫兹带宽、软件定义系统浪潮。

一、让5G大放异彩

从车辆间通信到手持设备上玩大型游戏,都将需要5G网络的速度和即时响应时间。将5G功率投入大众市场的关键是在基站应用和5G连接设备中使用28纳米高速模数转换器(ADC)和数模转换器(DAC)。

ADI公司在开发高速转换器方面有悠久的历史——包括新的12 Gsps 16位RF DAC和 3 Gsps 14位RF ADC。

(首款全新系列 RF 转换器,专为 4G/5G 多频段无线通信基站、多标准生产测试系统和防御电子产品等 GHz 带宽应用场合而设计。这些 ADC 和 DAC 基于 28 nm CMOS 技术,可提供一流的带宽、功耗和动态范围,以覆盖最多的信号频带。)

二、保障安全

听说你们那里热爆了? 工程师面对的真正高温是这样的

许多行业都需要能够在极端高温等恶劣环境下可靠工作的电子设备。依照传统做法,在设计需要在常温范围之外工作的电子设备时,工程师必须采用主动或被动冷却技术,但某些应用可能无法进行冷却,或是电子设备在高温下工作时更为有利,可提升系统可靠性或降低成本。

最古老以及目前最大的高温电子设备(>150°C)应用领域是地下石油和天然气行业(图1)。在该应用中,工作温度和地下井深成函数关系。全球地热梯度一般为25°C/km深度,某些地区更大。

地下钻探作业

图1.地下钻探作业

过去,钻探作业最高在150°C至175°C的温度范围内进行,然而,由于地下易钻探自然资源储备的减少和技术进步,行业的钻探深度开始加深,同时也开始在地热梯度较高的地区进行钻探。这些恶劣的地下井温度超过200°C,压力超过25 kpsi。主动冷却技术在这种恶劣环境下不太现实,被动冷却技术在发热不限于电子设备时也不太有效。

深度揭秘特斯拉Model S底盘:电机

目前,在电动汽车的电机方面,交流感应电机与永磁同步电机是采用较多的两种。与永磁电机相比,感应电机的成本略低;但同时,它的性能与效率也相对较差。其中,永磁同步电机需要用到稀土资源,目前全球市场绝大部分的稀土资源是由中国提供的。所以基于资源的控制,以及制造成本的考虑,欧美市场的大部分纯电动车或混动车型,采用的都是感应电机。

与这台感应电机搭配的,是一个电流逆变器。它将电池组的直流电转换为交流电,输入到感应电机中;而感应电机的动力则通过一个9.73:1的固定齿比变速箱,将动力创送至轮端。此外,与上述驱动机构搭配的,还有一个差速器--这是任何一辆车都必备的零件。电池、电机、逆变器,以及固定齿比的变速箱,构成了特斯拉Model S的动力总成。

我们知道,Model S是一款后置后驱的车型,它的驱动机构位于车辆后桥,这让其前轮仅负责转向。所以,对于一款标榜运动性的豪华D级车来说,还差那么一点--就是四驱系统。说起四驱系统,大家都会联想到quattro、X-Drive、4Matic这些四驱品牌,还会想到分动箱、差速器、差速锁,以及什么粘性联轴节之类的技术名词。

高效电动机知识

目前我国工业能耗约占总能耗的70%,其中电机能耗约占工业能耗的60%~70%,加上非工业电机能耗,电机实际能耗约占总能耗的50%以上。而现今高效节能电机应用比例低。根据国家中小电机质量监督检验中心对国内重点企业198台电机的抽样调查,其中达到2级以上的高效节能电机比例只有8%,这对整个社会资源产生了极大的浪费。

有机构做过计算,如果将所有电动机效率提高5%,则全年可节约电量达765亿千瓦时,这个数字接近三峡2008年全年发电量。所以说节能电机行业的发展空间大、需求性强。政策方面,国家标准化管理委员会于2012年发布了强制性标准《GB18613-2012中小型三相异步电动机能效限定值及能效等级》。

一高效电机的节能措施

电动机提高效率的措施。电机的节能是一项系统工程,涉及电动机的全寿命周期,从电动机的设计、制造到电动机的选型、运行、调节、检修、报废,要从电动机的整个寿命周期考虑其节能措施的效果,国内外在这方面主要考虑从以下几个方面提高电机的效率。

节能电动机的设计是指运用优化设计技术、新材料技术、控制技术、集成技术、试验检测技术等现代设计手段,减小电动机的功率损耗,提高电动机的效率,设计出高效的电动机。

电机电流过高的7种情况,您还有补充吗?

电动机电流高时,常常会表现在电动机发热严重,以下7点基本概括了电动机电流过高的原因,让我们学习一下。

1电源问题
电源方面使电动机发生过热的原因,有以下几种:

1、电源电压过高
当电源电压过高时,电动机反电动势、磁通及磁通密度均随之增大。由于铁损耗的大小与磁通密度平方成正比,则铁损耗增加,导致铁心过热。而磁通增加,又致使励磁电流分量急剧增加,造成定子绕组铜损增大,使绕组过热。因此,电源电压超过电动机的额定电压时,会使电动机过热。

2、电源电压过低
电源电压过低时,若电动机的电磁转矩保持不变,磁通将降低,转子电流相应增大,定子电流中负载电源分量随之增加,造成绕线的铜损耗增大,致使定、转子绕组过热。

3、电源电压不对称
当电源线一相断路、保险丝一相熔断,或闸刀起动设备角头烧伤致使一相不通,都将造成三相电动机走单相,致使运行的二相绕组通过大电流而过热,及至烧毁。因此,对于三相电机一般不适用熔断器进行保护。

4、三相电源不平衡

当三相电源不平衡时,会使电动机的三相电流不平衡,引起绕组过热。

由上述可见,当电动机过热时,应首先考虑电源方面的原因(软启动、变频器、伺服驱动器亦可看作是电源)。确认电源方面无问题后,再去考虑其他方面因素。

就这样,从PCB移除PBGA封装

如何从印刷电路板 (PCB) 移除塑封球栅阵列封装 (PBGA),这该是每个硬件师都必备的技能吧。ADI给出一套从PCB移除PBGA 封装的建议返修程序。

PBGA是一种封装形式,其主要区别性特征是利用焊球阵列来与基板(如PCB)接触。此特性使得PBGA相对于其他引脚配置不同的封装形式(如单列、双列直插、四列型)有一个优势,那就是能够实现更高的引脚密度。PBGA封装内部的互连通过线焊或倒装芯片技术实现。包含集成电路的PBGA芯片封装在塑封材料中。

PBGA器件示意图

图1. PBGA器件示意图

PBGA器件返修将PBGA器件装配到PCB上之后,若发现缺陷,应当返修以移除不良器件,并换上工作正常的器件。移除器件之前,应加热不良器件直至焊接接头液化,以便于从电路板上移除不良器件。

常规返修程序如下