selina的博客

电动机几种常用的调速方法

本文大兰电机小编将为您详细介绍电动机几种常用的调速方法。

1、电磁调速电动机调速方法

电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。

电磁调速电动机的调速特点:

①调速平滑、无级调速;

②速度失大、效率低;

③对电网无谐影响;

④装置结构及控制线路简单、运行可靠、维修方便。

本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。

2、定子调压调速方法

当改变电动机的定子电压时,可以获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。

调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。

调压调速的特点:

级联隔离栅以满足高爬电距离要求

利用序列光耦合器建立双隔离栅会存在一些问题,因为数据完整性很差,而且没有一种紧凑和廉价的方式为两个隔离栅之间的接口提供电源。

随着高性能数字隔离器的问世,通过分层隔离器建立高压隔离栅现已成为一种可行的解决方案。由于新型电池和发电产业的快速扩张,我们需要具有很高工作电压的接口,还要求提供加强绝缘。例如,太阳能逆变器应用具有以下要求:

【连载】电机控制学习笔记:电磁基础1

作者:陈立波

1.1 电磁基础

1.1.1 基本符号

fm 磁动势
Rm 磁阻
Φ 磁通
N 线圈匝数
L 电感
Λ 磁路磁导
e 感应电动势
u 电压
i 电流
Pn 极对数
Pm 电磁机械功率
Ωr 转子机械角速度
Te 电磁转矩
Wm 电磁机械能

1.1.2 磁动势、磁通、磁阻

可以利用电动势 V,电阻 R 和电流 A 分别理解磁动势 f,磁阻 Rm 和磁通 Ф。

1.1.3 磁链 电流流过单线圈,励磁磁链公式:

振动筛电机烧毁的常见原因及预防措施

有技术人员指出,实验室振动筛主要配套标准分样筛使用,代替手工筛,具有时间标准、力度、频率均匀的优点。在振动筛的使用过程中振动电机烧毁也算是较常见的故障了,那么什么原因易引起此类故障发生呢?下面对几种常见引起振动电机烧毁的原因及预防措施进行详细说明:

1)安装问题

因为振动电机两端装有较重的偏心块,如垂直或倾斜安装,则轴承轴向要承受偏心块的重力。如果振动筛振动电机里无特殊装置,将对轴承产生不良影响,从而缩短使用寿命。

预防措施:①选择立式振动电机;②尽量避免垂直或倾斜安装。

2)地脚螺栓的松动问题

这是引起振动电机烧毁的主要故障之一,由于振动电机本身结构的特殊性,其两端偏心块产生的激振力每分钟要上二千次地冲击地脚螺栓,再由于振动电机本身的参振,故地脚螺栓非常容易松动,一旦某个螺栓松动,就会在较短的时间内引起其它螺栓的松动,甚至断裂,从而烧毁电机。

预防措施:①经常加固地脚螺栓;②增加防松装置;③保证地脚面与电机地板的良好接触,使几条地脚螺栓均匀受力。

三相变频电源的主要特点

众所周知,三相变频电源采用FPGA数字化控制、瞬时波形控制及高频脉宽调制(SPWM)等技术,用主动元件IGBT模块设计使单机容量最高达240KVA,以隔离变压器输入及输出,来增加整机稳定性,特别适应感性,容性及特殊负载,负载测试和寿命试验可靠性高。那么,三相变频电源都有哪些主要的特点呢?

1、三相变频电源中,380V输入三相,380V输出经过AC-DC-AC变换的双逆变电源称为三相变频电源。它有别于用于电机调速用的变频调速控制器,也有别于普通交流稳压电源。

2、三相变频电源的主要功用是将现有的交流电网电流变换成所需频率的稳定的纯净的正弦波电源。理想的交流电源的特点是频率稳定、电压稳定、内阻等于零、电压波形为纯正弦波(无失真)。变频电源十分接近于理想交流电源,因此,先进发达国家越来越多地将变频电源用作标准供电电源,以便为用电器提供最优良的供电环境,便于客观考核用电器的技术性能。

3、三相变频电源对一般负载类型无特殊要求,可适应阻性、感性、容性、整流以及混合负载。样本给出的技术参数是额定状态、阻性负载条件下测试的,在额定条件下,电源长期运行。但考虑到电网电压的波动、负载电流波峰系数、短时过载等因素,选择电源频率是应留有适当余量。混合负载:频率漂移、波形失真、杂讯干扰、谐波干扰、建波脉冲、电压浪涌、电压不足、电压下陷。

步进电机使用总结——噪声与振动的抑制

不正确地驱动步进电机很容易导致电机发出“嗡嗡”的噪声和很大的振动。

当驱动步进电机时,如果发现步进电机处于静止状态时,其内部都发出很明显的噪音,有点类似线圈快速变化那种,一般是由于线圈电流过大导致的。对于这种情况,最有效的接决方法是降低电机线圈中流过的电流,具体方法包括:设置驱动器在电机停止时自动半流,减小电机的驱动电流。由于步进电机的工作方式,所以步进电机处于何种状态,其内部线圈都一直有电流变换。

当驱动步进电机动作时,如果发现步进电机噪声和振动很明显,应按如下步骤检查:

1、步进电机和驱动器是否配套,这是很关键的:如果它们并不配套的话,下面的一些步骤的调节细分、驱动电流、速度很可能都是白费力气。 在我自己的使用经历中,就遇到过这种情况,雷赛的电机用一个其他牌子的驱动器驱动,在其它条件一样的情况下,总是会产生很明显的噪声和振动,并带动机械结构发出很大的声响。同样,用雷赛的驱动器驱动一些其他厂家的步进电机,同样会发出很大的噪声和振动。所以建议大家在选用步进电机和驱动器的时候,最好是成套购买,并且要确保买到的是正规产品。现在市面上同一款型号的驱动器,都有很多厂家生产。比如DM542,比较正规的都有安科特和雷赛这些。

尼古拉·特斯拉发明的异步电动机

异步电动机,又称“感应电动机”,即转子置于旋转磁场中,在旋转磁场的作用下,获得一个转动力矩,因而转子转动。转子是可转动的导体,通常多呈鼠笼状。由电气工程师尼古拉·特斯拉于1887年发明。

转子绕组不需与其他电源相连,其定子电流直接取自交流电力系统;与其他电机相比,异步电动机的结构简单,制造、使用、维护方便,运行可靠性高,重量轻,成本低。以三相异步电动机为例,与同功率、同转速的直流电动机相比,前者重量只及后者的二分之一,成本仅为三分之一。异步电动机还容易按不同环境条件的要求,派生出各种系列产品。它还具有接近恒速的负载特性,能满足大多数工农业生产机械拖动的要求。其局限性是,它的转速与其旋转磁场的同步转速有固定的转差率(见异步电机),因而调速性能较差,在要求有较宽广的平滑调速范围的使用场合(如传动轧机、卷扬机、大型机床等),不如直流电动机经济、方便。此外,异步电动机运行时,从电力系统吸取无功功率以励磁,这会导致电力系统的功率因数变坏。因此,在大功率、低转速场合(如拖动球磨机、压缩机等)不如用同步电动机合理。

新能源纯电动汽车的轮毂电机优缺点解析

轮毂电机技术又称车轮内装电机技术,它的最大特点就是将动力、传动和制动装置都整合到轮毂内,因此将电动车辆的机械部分大大简化。轮毂电机技术并非新生事物,早在1900年,就已经制造出了前轮装备轮毂电机的电动汽车,在20世纪70年代,这一技术在矿山运输车等领域得到应用。而对于乘用车所用的轮毂电机,日系厂商对于此项技术研发开展较早,目前处于领先地位,包括通用、丰田在内的国际汽车巨头也都对该技术有所涉足。

轮毂电机驱动系统根据电机的转子型式主要分成两种结构型式:内转子式和外转子式。其中外转子式采用低速外转子电机,电机的最高转速在1000-1500r/min,无减速装置,车轮的转速与电机相同;而内转子式则采用高速内转子电机,配备固定传动比的减速器,为获得较高的功率密度,电机的转速可高达10000r/min。随着更为紧凑的行星齿轮减速器的出现,内转子式轮毂电机在功率密度方面比低速外转子式更具竞争力。

优点:

省略大量传动部件,让车辆结构更简单

对于传统车辆来说,离合器、变速器、传动轴、差速器乃至分动器都是必不可少的,而这些部件不但重量不轻、让车辆的结构更为复杂,同时也存在需要定期维护和故障率的问题。但是轮毂电机就很好地解决了这个问题。除了结构更为简单之外,采用轮毂电机驱动的车辆可以获得更好的空间利用率,同时传动效率也要高出不少。

变频电机如何选择

变频电机的出现主要解决普通电机在低速和高速运行的一些问题,普通电机在低速运行是电机的散热问题和高速时电机轴承的强度问题。普通电机的散热大多是空气自冷式,电机的散热靠电机端部的两片叶轮的搅动。当电机的转速较低的时候,电机的散热就成了问题。

二次转矩负载,在转速降低时,转矩也降低,发热量也降低,适合选用普通的电机用于变频,但时间已不在低于40%同步速的情况下使用。其他的负载,在60%同步速及以上运行时,选用普通的电机。在25%—60%同步速运行时,选用外部强制冷却笼性电动机,即变频专用电机。当转速低于25%同步速时,选用完全强制冷却电动机。即矢量专用电动机。

不同的变频控制方式控制的速度的速度是不一样的,采用U/F控制方式控制速度的范围是150—1470m/min;采用无速度传感器的矢量控制和直接转矩控制,控制速度的范围是60—1500m/min;采用速度传感器的矢量控制和直接转矩控制,控制速度的范围是5—1500m/min,在5m/min时运行的稳定性不太好。

本文转自:变频电机如何选择

电动车电机中有霍尔和无霍尔的区别是什么

霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。

原理:

有霍尔型是通过电机的霍尔型号来判断当前电机运动的状态,然后控制器根据霍尔所采集的信号再控制控制器的三相输出来给电机供电,让电机持续正常的工作。

无霍尔型的是电机无霍尔传感器,控制器通过电流采集来判断电机当前的运动状态,然后控制控制器输出来给电机供电,让电机争产工作。

作用:

有霍尔型电机和控制器在使用时稳定,启动时扭矩大,无异响。

无霍尔型电机和控制器在使用时因技术问题,目前还不是很稳定,特别是在起步阶段,稳定性差,动力不够。

在电动自行车中有多处利用了霍尔传感器,如调速转把,刹把,以及无刷电机中等。

电动车调速转把 : 调速转把顾名思义是电动车的调速部件,这是一种线性调速部件,样式很多但工作原理是一样的。它一般位于电动车的右边,既骑行时右手的方向,电动车转把的转动角度范围在0;30度制之间。