selina的博客

灵活使用放大器的禁用引脚

作者:Thomas Tzscheetzsch

问:我可以使用放大器的禁用引脚来节省功耗而不影响性能吗?

答:在物联网时代,电池供电应用日益兴盛。本文将说明我们并非一定要在节省功耗和精度之间进行取舍。

有些运算放大器有禁用引脚,如果使用得当,可以节省高达99%的功耗,同时不影响精度。禁用引脚主要用于静态工作(待机模式)。在这种模式下,所有IC都切换到低功耗状态,不需要使用器件来处理信号。这使功耗降低了若干个数量级。

如果运算放大器需要用作ADC的缓冲放大器,如图1所示,它必须处于工作状态才能执行其功能。但是,如果通过禁用引脚将放大器切换到关断模式,仍然可以保持低功耗。通常,只要ADC不需要向其采样和保持功能块读入任何新数值,就可以使用关断模式。

不要使用我告诉你使用的电阻

自动地,我们在运算放大器的两个输入端都施加了相同的阻抗,就像我们多年前所教导的那样。这篇文章探讨了为什么会出现这个经验法则,以及我们是否应该遵循这种做法。

你被告知了什么
如果你是用741运算放大器成长起来的,那么它就会钻进你的脑中,以平衡运算放大器输入端看到的电阻。随着时间的推移,用不同的电路技术和不同的IC工艺,这可能不是正确的做法。事实上,它会导致更多的直流误差,更多的噪声和更多的不稳定性。我们为什么要开始这样做,并且改变了什么,以至于今天可能不是正确的做法?

在20世纪60年代和70年代,第一代运算放大器采用普通香草双极工艺制造。为了获得合理的速度,差分对尾电流通常在10μA至20μA范围内。

因此,在beta为40到70的情况下,输入偏置电流约为1微安。但是,晶体管匹配并不那么接近,因此输入偏置电流不相等,导致输入偏置电流(称为输入偏置电流)的差异达到输入偏置电流的10%至20%。

通过在同相输入端加入一个电阻(图1中的R3),等于输入电阻和反馈电阻的并联组合,使阻抗相等。通过做一些代数运算,可以看出误差减少到I 偏移 ×R 反馈。因为我偏移为10%至我的20%的偏差,这将有助于降低输出偏移误差。

小小二极管,为二极RF检波器带来大优势

二极管因为具有整流特性而用来产生直流电压,并且只要存在二极管,其所产生的直流电压便与交流和RF信号电平成比例。

今天为大家分享的内容把基于二极管的RF和微波产品与集成电路替代产品相对比。

基于二极管的分立式RF检波器

图1显示的是一个广泛使用的、基于二极管的RF检波电路原理图。可以把它看成一个带有输出滤波的简易半波整流器。输入信号的正半周期正向偏置肖特基二极管,进而对电容充电。在负半周期时,二极管反向偏置,导致电容上的电压处于保持状态,产生与输入信号成比例的直流输出。为了在输入信号下降或关断时让此电压下降,采用电阻与电容的并联组合来提供放电路径。

可驱动电流的高精度基准电压源,它是这样的……

基准电压源是精密的模拟集成电路,您无法(或者说很难)从基准电压源获取电流。如果您需要精密电压和少量电流,则需要一个带有外部元件的外部 LDO 以及 PCB 空间。

Refulator™ 提供了一种解决方案,这是一种能够驱动电流的高精度基准电压源。今天就由 ADI 的资深设计工程师 Michael Anderson(他拥有16项专利)为大家介绍采用 Refulator 的优点吧~

LT6658——基准电压源质量的低漂移稳压器

LT6658是一款精密低噪声、低漂移稳压器,具有专用基准电压源的精度规格和线性稳压器的功率能力——二者的优点结合为ADI 的 Refulator技术。LT6658的漂移为10 ppm /°C,初始精度为0.05%,两路输出分别支持150 mA和50 mA,每路输出均有20 mA的有源吸电流能力。为了保持高精度,负载调整率为0.1 ppm/mA。当输入电压源引脚连接在一起时,电压调整率典型值为1.4 ppm/V,而当为输入引脚提供独立电源时,电压调整率小于0.1 ppm/V。

“网红”SiC/GaN 功率开关,告诉你一个正确的关注姿势

新型和未来的 SiC/GaN 功率开关将会给方方面面带来巨大进步,从新一代再生电力的大幅增加到电动汽车市场的迅速增长。其巨大的优势——更高功率密度、更高工作频率、更高电压和更高效率,将有助于实现更紧凑、更具成本效益的功率应用。为了获得所有这些优势,必须设计更高性能的开关驱动系统。

实际的以开关为中心的视角正在演变成一种更完整的系统解决方案,新一代的具有更鲁棒的片上隔离的先进 栅极驱动器 IC、检测 IC、电源控制器和高集成度嵌入式处理器, 将能管理复杂的多电平、多级功率回路,从而正确发挥新一代 SiC/GaN 功率转换器的优势。

—— ADI公司再生能源战略营销经理 Stefano Gallinaro

驱动 SiC/GaN 功率开关需要设计一个完整的 IC 生态系统,这些 IC经过精密调整,彼此配合。设计重点不再只是以开关为中心,必须 加以扩大。应用的工作频率、效率要求和拓扑结构的复杂性要求 使用同类最佳的隔离式栅极驱动器(例如ADuM4135),其由高端 隔离式电源电路(例如LT3999)供电。控制须利用集成高级模拟 前端和特定安全特性的多核控制处理器(例如ADSP-CM419F)完 成。最后,利用高能效隔离式 ∑-∆ 型转换器(例如AD7403)检测电 压,从而实现设计的紧凑性。

5G已就绪,但测试准备好了吗?

3GPP于去年12月宣布首批5G新无线电(NR)规范获批,是5G发展里程的重要里程碑。但即使实现了这个正式里程碑,3GPP的成员之后至少还需要六个月来完成5G规范所需的更多细节。

虽然无线电规范已接近完善,但在公告发布时,测试规范才刚刚起步。测试规范是整个3GPP输出的重要组成部分,因为认证机构将采用这些规范来认证用户设备(UE)。RAN5是3GPP的一个工作组,其任务是详细说明UE测试规范(也称为合规性规范)。这些规范包括各种众所周知的测试,如RF发射和接收功率、波形质量、占用带宽、邻道泄漏等。还包括一些协议规范,用来定义电话和网络之间信号发送的行为性能(尚待起草)。

截至2018年3月,3GPP RAN5已经建立了测试规范的框架,并详细说明了规范的某些方面。这些测试规范是预发布版文档,可视为非常早期的版本,因为它们频繁使用了“TBD”(待定)和“FFS”(用于未来研究),以针对已知的未知,即为未来值预留的占位符。

3GPP RAN5制定的5G UE测试规范(来源:ftp.3gpp.org/Specs/latest-drafts)

高速ADC电源域

问题:高速ADC为什么有如此多电源域?

答案:在采样速率和可用带宽方面,当今的射频模数转换器(RF ADC)已有长足的发展。其中还纳入了大量数字处理功能,电源方面的复杂性也有提高。那么,当今的RF ADC为什么有如此多不同的电源轨和电源域?

为了解电源域和电源的增长情况,我们需要追溯ADC的历史脉络。早在ADC不过尔尔的时候,采样速度很慢,大约在数十MHz内,而数字内容很少,几乎不存在。电路的数字部分主要涉及如何将数据传输到数字接收逻辑——专用集成电路(ASI C)或现场可编程门阵列(F PG A)。用于制造这些电路的工艺节点几何尺寸较大,约在180 nm或更大。使用单电压轨(1.8 V )和两个不同的域(AVDD和DVDD,分别用于模拟域和数字域),便可获得足够好的性能。

随着硅处理技术的改进,晶体管的几何尺寸不断减小,意味着每mm2面积上可以容纳更多的晶体管(即特征)。但是,人们仍然希望ADC实现与其前一代器件相同(或更好)的性能。现在,ADC的设计采取了多层面方法,其中:

* 采样速度和模拟带宽必须得到改善
* 性能必须与前一代相同或更好
* 纳入更多片内数字处理功能来辅助数字接收逻辑

下面将进一步讨论上述各方面特性以及它们对芯片设计构成怎样的挑战。

【ADI 工程师博客】辐射效应概观

作者:Jonathan Harris,ADI公司产品应用工程师

我在ADI公司从事高速ADC支持工作有很多年,但近两年已转移到航天产品部门。当我就本月要撰写的主题展开头脑风暴时,我想到何不将我工作过的两个领域结合起来,谈谈关于高速ADC的几种辐射效应。深入探讨辐射如何影响高速ADC的某些细节之前,我们首先必须对一般的辐射效应有所了解。这将是一个包括多部分的系列,分若干篇博客介绍,我们将研究存在哪些类型的效应,然后看看其中几个效应如何具体影响高速ADC。

当一台设备被置于恶劣的太空环境时,可以预料辐射会导致不同类型的不良行为。这就是为什么我们使用德克萨斯州农工大学回旋加速器以及美国和世界各地的其他类似设施的原因。这些设施使我们能够在将设备放入卫星等应用环境之前,将设备暴露在辐射中以测量其性能。与可以更换故障设备的地面应用不同,设备送入太空之后,无法轻松进行更换。至少,在太空中更换设备会是一个成本巨大的冒险举措。

我想,很多人可能回想起哈勃望远镜的早期问题。我相信,那些事情对所有参与者来说都是痛苦的回忆。虽然它的问题不是太空辐射,而是设计缺陷,但发射之后的维修仍然是一个难题。通过在地球上对设备进行辐射测试,我们有信心确保设备可以在恶劣的太空辐射环境中正常运行。知道为什么要进行辐射测试之后,我们来看看可能遇到的不同辐射效应。

【ADI 工程师博客】请不要像倒洗澡水一样丢弃电表

如何延长电表使用寿命?

全世界的电力公司利用智能电表和高级计量基础设施(AMI)实现远程抄表、远程连接/断开、需求/响应以及其他高效运营操作。电力公司承受着不断提高运营效率的压力,同时缓解价格的上涨并改善客户服务。虽然智能电表和AMI不需要现场抄表员,但仍需安排昂贵的工作人员来替换接近使用寿命终点的电表。事实证明,这些被替换下来的电表中绝大多数仍可正常运行很多年。如果电表的使用寿命可以延长,直至精度下降之前才及时更换,该有多好?

延长电表的使用寿命可带来惊人的高回报。假设有一家电力公司,其花在单只电表及其安装上的成本为100欧元(119.77美元)。假设起始使用寿命为15年,将电表的使用寿命仅仅延长2年,每只电表便可节省13.3欧元(15.93美元)。若将电表的使用寿命延长3年,每只电表全寿命期间节省的成本将增加到20欧元(23.95美元)。如果电表的当前使用寿命少于15年,或者购买及安装成本高于100欧元,那么节省的成本将更加可观。另外,延长电表使用寿命还能改善客户服务,因为需要的服务中断次数会更少。

深度了解“极端物联网”

嗨,欢迎来到极端物联网世界!

在最高层次上,物联网通常与日益增加的互连传感器相提并论。

但随着物联网的不断发展,我们对它的面貌和功能的理解也在加深。

传感器数量在增加,它们收集的信息量也随之增加。而且,所有这些数据都计划传到云端,让物联网淹没在信息当中,过重的负担使其难以将信息转化为洞察。

有其他方面的考虑,例如:传输所有这些数据需要多少功耗?如果把垃圾放入云中,如何期望从中获得洞察?如果因为超范围测量或算法而需要立即采取措施,结果会怎样?如果只须将数据保存在本地呢?如果网络发生故障,该怎么办?

IoT 远不止是互连传感器

这种不断增长的复杂性正在改变许多物联网圈子的思维。主要分析机构(如McKinney等)认为,实际使用的云数据只有1%。即便是像微软这样的大规模云合作伙伴,也在将其关注重点从中心的云转向边缘的传感器。边缘常常可能处于极端环境。

想想沙漠中心的传感器,位于北极深处的传感器,或者充满无线电干扰的工厂中的移动机器人上的传感器。在此类极端环境中生存和运行是极具挑战性的。但如果收集的数据是一个复杂的波形,或者数据量非常庞大,以至于需要大量的电力才能将其定期发送到云端呢?